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Abstract

Let I be the 2 x 2 identity matrix, and M a 2 x 2 dilation matrix with M? = 21. Since one
can explicitly construct M-basic wavelets from an MRA related to M, and many applications
employ wavelet bases in R>, M-wavelets and wavelet frames have been extensively discussed.
This paper focuses on dilation matrices M satisfying M? = 2I. For any matrix M integrally
similar to (} Jl), an optimal estimate on the boundary of the holes of M-wavelets is obtained.
This result tells us the holes cannot be too large. Contrast to this result, when the modulus of
the Fourier transform of an M-wavelet is, up to a constant, a characteristic function on some
set, a property of this set is obtained, which shows the holes of this kind of wavelets cannot be
too small.
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Throughout this paper, we denote by Z the set of integers, Z, the set of
nonnegative integers, and I the 2 x 2 identity matrix. For x = ( ), y= (;;) eR?,
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{x,y» is defined by
(X, y) =x1y1 + X202

For any Lebesgue measurable set SR> and 2 x 2 matrix 4, |S| denotes the
Lebesgue measure of S, yg denotes the characteristic function on S, 4* denotes the
transpose of 4, and A4S denotes the set

AS = {Ax: xeS}.
For any function f defined on R?, supp(f) is defined by

supp(f) = {xeR* f(x)#0}.
For f e L'(R?), we define the Fourier transform of f by

)= de( Je <X

Let S be a Lebesgue measurable set in R?. A collection {S,: yeI'} of Lebesgue
measurable subsets of S is called a partition of S if J,.r S, =S up to a set of
measure 0, and |S,nS,| =0 for y#9', y, y'eT.

A 2 x 2 matrix M is called a dilation matrix if it is an integer matrix with its all
eigenvalues A’s being larger than 1 in modulus.

Let M be a given 2 x 2 dilation matrix with M? = 2I. For any function f defined
on R, jeZ, and ke Z?, define

k() =230 (M k),

A function i/ is called an M-wavelet if {\;,: je Z, ke Z?} is an orthonormal basis for

on

L?(R?); and the hole of the M-wavelet is referred to be the maximum connected set
containing a neighborhood of the origin on which v vanishes a.e. A function

collection y', y?, ... " is called to generate an M-tight frame with frame bound 1 for
L*(R?) if

S (oP =l

I=1 jeZkeZ?
for feL*(R"). A ladder of closed subspaces {V;},., of L*(R?) is called a
multiresolution analysis (MRA) related to M if the following conditions hold:
1) v _y for jeZ;

@ n/'eZ J= {0} U/eZ J —Lz(Rn)

(3) f(-)eV; if and only if f(M’-)e V, for jeZ;

(4) there exists a function ¢(-) in ¥y such that the set {¢(- —k)}, . is an
orthonormal basis for V.

It is well known that one can obtain an M-wavelet from an MRA related to M, but
not any M-wavelet can be derived from an MRA related to M [6,9].
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In recent years, multi-dimensional wavelets and wavelet frames have been
extensively discussed [2—4,7,10-12,15-17,19,20]. Especially, the study of bidimen-
sional wavelets has attracted many mathematician’s interest. Many applications,
such as image compression, employ wavelet bases in R>. Although separable bases
have a lot of advantages, they have a number of drawbacks. They are so special that
they have very little design freedom, and separability imposes an unnecessary
product structure on the plane, which is artificial for natural images. This preferred
directions effect can create unpleasant artifacts that become obvious at high image
compression ratios. Nonseparable wavelet bases offer the hope of a more isotropic
analysis [1,8,13,14,21]. M-wavelets are nonseparable. Hence, one may hope for a
more isotropic analysis than with the separable construction. This is also why we
deliberately restrict ourselves to the matrix M.

One-dimensional analyzing wavelets {’s in continuous wavelet transforms are
required to satisfy the admissibility condition, which leads to

$(0) =0
if Y is also continuous at the origin. This is the case since YeL'(R) in almost all

examples of practical interest. It is also well known that if i is a 2-wavelet and l/; is
continuous at the origin, then

Yo WeTP=1
jezZ
a.e., which also implies that

¥ (0) = 0.

Hence, it is reasonable for a 2-wavelet y to require that 1(0) = 0, and consequently,
it is interesting to introduce the concept of the hole of a wavelet. In [5], the behavior
at the origin of a class of band-limited 2-wavelets is deliberately addressed, and many
sharp results are obtained. Obviously the set [—n, 7] is the hole of the shannon
2-wavelet. The size of the hole of a 2-wavelet is discussed in [18]. By Theorems 5 and
6 in [18], we have that

Proposition 1. Ler  be a 2-wavelet for L*(R). Then |supp(y) n[—c, c]|>0 for ¢>.

Proposition 2. Let y be a 2-wavelet for L>(R) with |1ﬁ|:¥2n;{,{ for some
K< [-2n,2x]. Then,
|K N [—m,7]| = 0.

Analogously, suppose that i is an M-wavelet whose Fourier transform is
continuous at the origin. Then,

Yo W) TP =1

jezZ
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a.e., which implies that

$(0) = 0.

Therefore, it is a natural problem to discuss the holes of M-wavelets.

Definition 1.1 (Bownik and Speegle [4], Lagarias and Wang [15]). Let 4 and B be
two 2 x 2 matrices. A4 is called integrally similar to B if there exists an integer matrix

C with |det C| = 1 such that CAC~! = B. Here we call C an integrally similar matrix
from A4 to B.

Remark 1.1. Integrally similar matrix is not necessarily unique. For example, both

(1 V) and (] ;) are integrally similar matrix from (3 Do ().

In this paper, we are concentrated on the study of the holes of M-wavelets, where
M is a 2 x 2 matrix integrally similar to (1 jl) Our main results can be stated as
follows.

Theorem 1.1. Let M be a 2 x 2 dilation matrix, and M be integrally similar to the

matrix G jl), ie., PMP ! = (} jl) for some integer matrix P with |det P| = 1.

Suppose  is an M-wavelet, then,
supp(h) NP ({(&1, )" [&1l<e, [& + &l<c})]>0,

[supp(¥) NP ({(&1,&)": &l <e, [€ = &l <e})|>0
for c>m.
Remark 1.2. Theorem 1.1 shows the holes of M-wavelets cannot be too large. In

addition, the following Theorem 1.2 shows Theorem 1.1 is optimal in the following
sense: it does not hold for ¢ = =.

Theorem 1.2. Let M be a 2 x 2 dilation matrix, and M be integrally similar

to the matrix (} Jl), ie, PMP'= (} Jl) for some integer matrix P with

|det P| = 1. Suppose W is an M-wavelet satisfying that |}| =y for some K
satisfying

KeP({(&, &) |al<n, |8+ &l<2n))

(or K P ({(&,&)": |&]<n, |€ — &|<2n)})),
then

IKnP'SV| =0 (or |[KnP'SP|=0),
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where

SO ={(&, &) |al<m, & + &<},

SO ={(&, &) al<n & - &l <}

Remark 1.3. Theorem 1.2 shows the holes of M-wavelet in this the theorem cannot
be too small. An example of s satisfying the hypothesis of Theorem 1.2 is given in
Example 4.1 in Section 4.

Remark 1.4. Note that M-wavelets are not separable, which is not the tensor
product of one-dimensional wavelets. We have not known the results about the M-
wavelet set as in one-dimensional case. So Theorem 1.2 is not the simple consequence
of wavelet sets.

1
-1

from M to (} Jl) can be obtained according to the algorithm below Lemma 2.4 in
Section 2.

Remark 1.5. For a matrix integrally similar to (} ), an integrally similar matrix P

Remark 1.6. By Remark 2.1 below Lemma 2.1 in Section 2 and the analogous
argument to that at the beginning of Section 4, Theorem 1.1 holds under the

following conditions: M satisfies PMP~' = (; ') for some invertible matrix P;

{2%1//(MJ§ - —Pk): je Z ke Z?} is an orthonormal basis for L?(R?). If, in addition,
1 22 e p s
| = 2n\/mXK’ then Theorem 1.2 holds. Note that PZ- =27~ if P is a 2 x 2

integer matrix with |det P| = 1. The two conclusions generalize Theorems 1.1 and
1.2, respectively.

In Section 2, some auxiliary lemmas and an algorithm of integrally similar matrix
are given. In Section 3, some properties of (i jl) and (} Jl) wavelets are given. In
Section 4, the proofs of the theorems are given, and an example of Theorem 1.2 is

also given.

2. Some auxiliary lemmas and an algorithm of integrally similar matrix

Lemma 2.1. Assume that yeL*(R?), that M is a 2 x 2 dilation matrix with
M12 =21, and that M, is integrally similar to M\, i.e., M>» = PM, P~ for |det P| = 1.
Then (- is an Mi-wavelet for L*(R2) if and only if Y(-) = y(P~'.) is an My-wavelet
for L*(R?).
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Proof. Note that PM, P! = M, it is easy to check that

2B (M Tx — k)2 5y x — k)

- / dx 27 29(P~ My x — P2 Ty (P My x — Pk
Rz

dx2” 2x//( Ix— P k)2" 2¢(M T x— P (2.1)

R2

for j,j'eZ, k, k' e Z>.
Suppose V is an M;-wavelet for L?>(R?). Then, by (2.1), y generates an M,-
orthonormal system. For any f e L*(R?), f(P-)e L*(R?). Hence,

fPY= Y p k)= Y 2 M Pk

jeZkeZ? jeZkeZ?

for some {f;x} €/*(Z x Z?*), and consequently,

- ¥ Sa2 SH(PMI P — P = 3 2y P k).

jeZkeZ? jeZkeZ?

Therefore, } is a My-wavelet for L2(R?). The necessity is proved. [
The sufficiency can be proved analogously.

Remark 2.1. By the same procedure as that in Lemma 2.1, we have: Assume that
Y e L*(R?), that M, is a 2 x 2 dilation matrix with M7 = 2/, and that M5 is similar to

M,, ie, M>=PMP' for some invertible matrix P. Define !/;():

I S
|det P| 2yy(P~"-). Then y(-) is an M;-wavelet for L?(R?) if and only if {2*J5¢(M;f :
—Pk): jeZ,keZ*} is an orthonormal basis for L?(R?).

Lemma 2.2. A 2 x 2 integer matrix M is a dilation matrix with M*> = 2I if and only if
M=+ (1; f’k) for some keZ,, and some b, ce Z satisfying bc = 2 — k.

Proof. Suppose M = (“ 7). Obviously the eigenvalues of M are larger than 1 in
modulus if M? = 21. So it suffices to show that M> = 27 ifand only if M = + (¥ %)
for some 0<keZ, and some b, ce Z satisfying bc = 2 — k?. It is easy to check that

the fact that M? = 21 is equivalent to the fact that
@ +be=d* +be =2, (2.2)

ab+bd =ac+cd = 0. (2.3)
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Since a, de Z, it follows from (2.2) that bc#0. Hence, (2.2) and (2.3) are equivalent
to the fact that

@ +bc=2 and a=—d,
which completes the proof. [

Lemma 2.3. (1) Integral similarity is an equivalent relation;
(2) Two 2 x 2 matrices A and B are integrally similar if and only if —A and —B are
integrally similar,
(3) Let A and B be two 2 x 2 integrally similar matrices. If A is a dilation matrix
with A> = 21, then so does B;
1

(4) If a 2 x 2 matrix A is integrally similar to the matrix (1 jl), then so does —A.

Proof. We only give the proof of (4). The proofs of the others are omitted. Suppose
PAP~! = (] ) for some integer matrix with |det P| = 1. Putting 0 = ( ') P, we
obtain that Q(—4)Q~! = (; ). The proof is completed. [

Remark 2.2. Proposition 2.1 in [4] and Lemma 5.2 in [15] give a classification of
integer matrices with determinant +2 in terms of integral similarity. By Lemma 2.3,
they are equivalent, and any dilation matrix M with M? = 21 is integrally similar to
(1 1)- It follows from Lemmas 2.2 and 2.3(4) that, for dilation matrices M with
M? = 21, the question of looking for an integrally similar matrix P from M to (] )

is reduced to looking for an integrally similar matrix P from (* %) to (} '), where
keZ., b, ceZ bc=2—-k>

Lemma 2.4. Let keZ,, b,ceZ, and bc =2 —k*>. Then P is an integrally similar
matrix from (’(‘ f’k) to (} Jl) if and only if
p_ ((k+ Dx+cy bx—(k— 1)y)’
X y
where x,yeZ, and
(bx? = 2kxy — ey?)? = 1. (2.4)

Proof. An unknown matrix (t f) satisfies

o P\ [k b 1 1 o p

)G 5)-0 )G )
if and only if

o—(k+1)x—cy=0,

p—bx+(k—1)y=0,

(k—Da+cp—x=0,

bo—(k+1)p—y=0.
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It follows from simple computation that (2.5) is equivalent to
{fx= (k+1)x+cy,
p=bx—(k—1)y.

Hence, (¥ ) is integrally similar to (} ') if and only if there exist x, y€ Z such that

[det(i ﬁ)r: 1, where o, f satisfy (2.6). It is easy to check that [det(i{ fﬂz:

(bx? — 2kxy — cy*)*. Therefore, (¥ °) is integrally similar to (! ) if and only if the
bivariate equation

(bx> — 2kxy — ey*)* =1

(2.6)

has an integer solution. The proof is completed. [

It follows from Lemma 2.4 that looking for an integrally similar matrix P, from a
2 x 2 dilation M with M?> =21 to (; ), is reduced to looking for an integer
solution to the bivariate equation (2.4). Obviously it is not easy. Here we give an

algorithm to get such a P. The idea is borrowed from [15].

(I) By Lemma 2.2, M = + (¥ %) for some keZ,, and some b,ceZ satisfying
be=2—k* Note that Q(* Yo' = (] ') if Pt 2)P'=(] '), where Q=
(¢ P. So it suffices to look for the integrally similar matrix P from (* %) to
(i ), where ke Z,, and b,ce Z with bc =2 — k*.

(D If k=0, then M = (3 ), (% ), 0 3), or (% 7). and we take P = (] o),
G, (5 1), or (5 ), respectively.

If k=1, then M=(; ') or (! 7]), and we take P=(; ) or (] '),
respectively.

If k=2, then M= (2 '), 320, (% 2),or } 23, and we take P= (] ),

(} ?1)7 (} (2)), or (} ,02), respectively.
(I11) k>2.
Since keZ, be=2—k*#0. If [b|>k and |¢[>k, then [b] = 57

le

Noting be Z and 0<2< 1, we obtain that 0<[b|<k or 0<|c|<k.
When 0<|b| <k, it is easy to check that

(sigiaa) ?)(k bk)(sigrlmb) (1)>1(zksigﬁ<;>|i|cb |bbk>'

When 0<|c| <k, it is easy to check that

O A [P I

In view of Lemma 2.3 (3), applying the above procedure to (i‘ f’k) finitely many

times, we reduces (III) to (IT). Then the product of all these similar matrices gives
the P.



Yun-Zhang Li | Journal of Approximation Theory 125 (2003) 151-168 159

3. Some properties of a special M and M -wavelets

Throughout this section M is always referred to be the matrix (} Jl)

Lemma 3.1. Let M = (| ). For ¢>0, define
SO ={(&, &) Gl <e & + &Gl<el,
SP = (&, &)": |&l<e |8 - &l<e}
Then
MSV M8 and  MMSP < MPSP)
Jor jir<j2, j1; p€Z.

The proof is omitted.

Lemma 3.2. Let M = (% 31), c>0, Sgl) and ng) be defined as in Lemma 3.1. Define
IV ={(&1,&)": |G| <e e<[é + &l <26},
1P ={(&,8)" |&l<e,e<(E) - & <2}

Then,

(D Both {Mflf.l): JjE€Z} and {Mjlc(z): jeZ} are partitions of R*;

@ (M1 jez,j<0) and {MIIP: jeZ,j<0} are partitions of S and S,
respectively.

Proof. We only give the proof of the case IL(.I). The proofs of the other parts can be
given analogously. Define S = 1((.1> uMIél)7 then

S ={(€1,52)T: €11 <c,e<|E + & <2}
U{(fl’fz)Ti <& 2¢, |E + &) <2c}.

It is easy to check that {2S:jeZ} is a partition of R It is obvious that

IV AMYIV cSAVS for 0#jeZ, and that L. AM¥ ' .cSA2YMI.cSAYS for
JeZ.
Hence,

D AM IV =0 (3.1)

for 0#jeZ.
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Since {2/S: jeZ} is a partition of R?,

R = U s

jezZ

- 2f1§1>>u< 2/‘M1§1>>

_ ( U M2]I§1)> U ( U M2j+116§1)>
jezZ jezZ
= M1V

jez
up to a set of measure 0. This together with (3.1) implies that {M/IL(,I): je€Z} is a
partition of R?.

It is obvious that I'V =« MS!V, and consequently, M1\ = M7+ StV for je Z. So,
by Lemma 3.1, M1V < M+ sV < SV for j<0, jeZ.

Hence,

U M1V esh. (3.2)

Jj<0
For any ceSY with & #0, there exists J1 <0 such that 21~'e<<|&|<2e. Since
D= {(&,&)" e<|&)| <26, |E) + & <26},
ge M1 = MY when [¢) + &|<Ve. When [¢) + &|> e, 227 Te<|é) +
&)| <2”¢ for some ji <j, — 1. Noting that |¢;] <2~ !¢, we obtain that ge2r-1M —
M¥>-2[V Therefore,

she ) mrY (3.3)
j<0
up to a set of Lebesgue measure zero. This together with (3.1) and (3.2) implies that
{M/I((l): Jj€Z,j<0} is a partition of Sgl). The proof is completed. [

Lemma 3.3. Let M = (; '), 0<c<m, IV and 17 be defined as in Lemma 3.2, Oy,
0>, 03, and Qy denote the four quadrants in R>. Define 1//51) and x//fz) b

o) o 1

1 1 2
lﬁl( ) ﬂXQ,nlfl) and Qpl( ) — EXQWL(Z)
for 1<i<4. Then both the collection

1 1 1
ISRV SRS

and the collection

s ey
generate M-tight frames for L*(R*) with frame bound 1.
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Proof. We only give the proof of {Ml), lﬁ(zl), §”, lﬁgl)}. The proof of the other is
analogous. Taking the closed subspace of L?(R?)

9 ={feL*(R’): feL™ (R*),supp(f) =K
for some compact K< R*\{0}},

then it suffices to show that

4
IAP=>" > KSgior (34)
i=l jeZkeZ?
for feg.
By [3, Corollary 3.3], it suffices to show that
Wi (ME)|" = (3.5)
-1 jez 4n

for a.e. e R?, and

o0 /\

4
ST 3w et (i + 2nk)) = (3.6)

i=1 j=0

for ke Z>\MZ? and a.e. (e R°.
By Lemma 3.2, {Mjlﬁl): jeZ} is a partition of R>. Hence, by the definition of w§1>7

(3.5) holds. Since the diameter of the sets Q,ﬂlfl) measured along the coordinate
axes is not larger than 27, (3.6) holds. The proof is completed. [

Lemma 3.4. Define
SO = {(&, &) &<, ¢ + &<,
SO ={(&. &) |al<n, & - &<},

Then,
2
—iCkEy | _ g2 s o
k;z /S déf( ) = dn /~g7<(l) dé |f(£)| for fEL (Srcl )a (37)
2
Z 2) dif(é)e_l<k‘5> = 477:2 o df |f(£)|2 for fELZ(SELz)) (38)
kez? S Sn

Proof. We only prove (3.7). Eq. (3.8) can be proved analogously. Since the diameter

of Sﬁ‘) measured along the coordinate axes is exactly 27, f can be 2nZ>-periodically
extended. We still denote the extended function by f.
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Define
T
Ry ={({1,&) : —n<4<0,—n - & <6<

U{(&,86)7 0<E <, —n<é<n— &),

R ={(&,5) —n<é <0, n<E<n— &),

R; = {(fl,fz)Ti 0<é <my,—n— & <6< — 7

Then,
. 3
—ik&y _ —ick,E
[, 4er@pe > | dzr@erso. (39)
dzf(&ehe
Ry
N / dnf(n+(0,2m) e
R')—(O,Zﬂ)
-/ dn f(n)e 40>
{omm)": —n<y <O~ <y <—m—n; }
:/ déf(&)e 'R, (3.10)
{(&.6)" —1<E <0, —n<s <-4}
Analogously,
déf(&e e = / déf(&)e ' Re. (3.11)
Ry {(&1.6)": 0 <ma—¢ <& <n)

This together with (3.9) and (3.10) yields that

asf@e o - |

[—ﬂ?ﬂ]

dEf(&e e,

S

and consequently,
2

-z

kez?

>

kez?

[, der@e o
st

| dereio
[

=4n’ /[ . dé |1 ().

By the arguments similar to that of the above, we obtain that

2 2
Joacirer= [ airor
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Therefore,

2
=4 [ de|f(&).

st

def(&e "t

Sm

D

kez?

The proof is completed. [

Lemma 3.5. Let M:( ) 0<c<m, S(( ), L(l), £1>, and I((,z) be defined as in
Lemmas 3.1 and 3.2, respectively. Suppose Y is an M-wavelet for L*(R?). Then,

Z 27j /]V[H(l) dé w/ C—2< Z 2 //A/I/AU di |lﬁ(f)|2

j<0 j<0

7 2
o 4P, (312)

DX /M,1<2> W< ST 2 ]/MH@ 2P

j<0 j<0
r 2
¥ / o TEOP (3.13)
In addition,

. e . 7 (1)
KZ()(ZJ—U/M[ dEOF =51 if supp() = MsL) (3.14)

i . c? _ .
ST [ dEWER == i supnth) < (3.15)

Proof. We only prove (3.12) and (3.14). Egs. (3.13) and (3.15) can be proved
analogously. Suppose lﬁm 1<i<4, are defined as in Lemma 3.3, then Hl/jz(‘])H% =
||1// ||2 = C—z Since ¥ is an M-wavelet for L?>(R?),

(32

2

[TasalE

ST ol

1 jeZkez?

-

[
B

i

2
dew e (e

R?

[
Mh

2/
1 ZkeZ’
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2

=2 >

1 jeZkez?

4
:Z 2/

dey DI (2)e HO
R2

2

/ dey O (M (E)e IO

Jj<
4 — 2
+ Z > / de (MO (g)e ke
i=l j>0kez? R?
=J +J" (3.16)

It is easy to check that supp(lﬁgl)(M‘«"~))cM’“Sﬂ1> for je Z, so, by Lemma 3.1,

—

supp(wl(l)(M*f-))cS((,l) s for j<0, je Z. Applying Lemma 3.4, we obtain that

>

4
)
i=1 j<0kez?
4 Ty . A
—2 2 M [, dzufonigier
i=1 <0 S

° 7 2

de (&

IIPIES o 4

- 2_"'/M,~,mdfll&<a>\2. (3.17)

2

27| [ agulorigi@e 4o

4

J//< Z Z 271‘

i=l j>0keZ?

— 2
[ acufonrgie oo
R2

since the right side contains more terms than the left side. By Lemma 3.1, it is easy to
check that the equality holds when supp(lﬁ) cMSgl).
Taking g such that § = (1 — XS@));&, then, by Lemma 3.3, we obtain that

4 — 2
<3y Ay (M (&)e™ MRS
i=l j>0keZ? R
4 o — ) 2
=3 > 27| Al =g (et
i=l jeZkeZ?

4
S Y KewloP

i=l jeZkeZz?
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/ 4 1G(2)

[ P (3.18)
RA\S,

where Lemma 3.3 is used in the third equality, the inequality sign, by Lemma 3.1,

changes to be equality sign when supp(lﬁ) CMS((,U.

It follows from (3.16)—(3.18) that

EX / dENOP<S<Y 2 [ e+ [ dewor

j<0 j<0 M1,

and when supp(tﬁ) CMS£1>,

S-Y o[ acior+ [ aclicor

j<0
=Yo7 [ aser - [ aeior (3.19)

j<0 M1,

By Lemma 3.2, (3.19) is equivalent to
2

Sei-n [ aeior=5-1.

j<0

The proof is completed. [

4. Proofs of Theorems

Assume that Theorems 1.1 and 1.2 hold for (} Jl)-wavelets. For any M-wavelet
Y, () =y(P")isan (| ! )-wavelet by Lemma 2.1. Applying the assumption to i},
we obtain that Theorems 1.1 and 1.2. Therefore, it suffices to show that Theorems
1.1 and 1.2 hold for (] ,)-wavelets.

Proof of Theorem 1.1. By contradiction. Let M = (} jl), and  be an M-wavelet.
Then we can take P = I. For ¢>0, deﬁne Sﬁ”, S(@, IC1 , and I ) as in Lemmas 3.1
and 3.2. Suppose that |supp( A) | =0 (or |supp(¥ )r\S(2 | = 0). Then, by (2) of

Lemma 3.2, |supp(y )meI |— 0 (or |supp(¥ )mM11< | =0) for j<0. Applying
(3.12) (or (3.13)) of Lemma 2.6 to i, we obtain that

¢ foa2 Trev?
o< [ @ew@r = [ acier =
@ = [ denper =1)
(or S= [, acwier= [ azier-1).

which implies ¢<n. The proof is completed. [
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Proof Theorem 1.2. Let M = (] '), and ¢ be an M-wavelet. Then we can take
P = 1. Define S,(Tl)7 S,(Iz), I,(rl), and I,(rz) as in Lemmas 3.1 and 3.2. Since KCMS;I) (or
KcMS(2)) (3 14) (or (3.15)) of Lemma 3.5 takes the form

nz > @7 =1DKaMIY| (or 0,4 5> Q7 = DKM IP))).

Jj<0 Jj<0

(4.1)
Again by Lemma 3.2, we obtain that
Z T DKM IV =0

KnS{ |—‘Km<UM-f )
Jj<0 <0

s o)

Hence, |KmS | =0 (or |KmS | 0). The proof is completed. [

> @7 -DKaMI? |—0)

j<0

In the next, we give an example of Theorem 1.2.

Example 2.1. Let a matrix M be integrally similar to the matrix (; '), ie.,

PMP ! = (} jl) for some integer matrix P with |det P| = 1. Define I and 1? asin
Lemma 3.2, define y by

l/;() _ 2]_7-5671'%<P*1 G)"»pr](l) ()

(or () = —5-e 3 2, (),

Then  is an M-wavelet for L*(R?).

Proof. By Lemma 2.1, it suffices to show the proposition is true for M = (i Jl)
Suppose M = (} jl), we can take P = I. We denote by my(-) the 2rnZ periodization
of 1z Then m, generates an orthonormal MRA for L?*(R) with my being its
symbol. Define Hy(&) = mo (&) (or Ho(E) = mo(&,)) for € R?. By [6], Hy generates

an orthonormal MRA for L*(R?) with H, being its symbol and ¢ being its scaling
function, where

1 4 .
= Hy(M™").
2n ]11

Then the basic wavelet § can be defined by

A

() = Hi(M ™ )d(M™"),
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where H; (&) = —e 1 Hy(¢é + (m,n)"). It is easy to check that

A 1 &i+é

30 = 5 ¢ 000 or () = - T F 0 0)

for £€ R%. Hence, ¥ =, and thus y is an M-wavelet for L>(R?). The proof is
completed. [

Acknowledgments

The author would like to thank the referees for their helpful suggestions, which
greatly improved the quality of this paper.

References

[1] E. Belogay, Y. Wang, Arbitrarily smooth orthogonal nonseparable wavelets in R?, SIAM J. Math.
Anal. 30 (1999) 678-697.

[2] M. Bownik, Tight frames of multidimensional wavelets, J. Fourier Anal. Appl. 3 (1997) 525-542.

[3] M. Bownik, A characterization of affine dual frames in L*>(R"), Appl. Comput. Harmon. Anal. 8
(2000) 203-221.

[4] M. Bownik, D. Speegle, Meyer type wavelet bases in R?, J. Approx. Theory 116 (2002) 49-75.

[5] L. Brandolini, G. Garrigos, Z. Rzeszotnik, G. Weiss, The behaviour at the origin of a class
of band-limited wavelets, in: The Functional and Harmonic Analysis of Wavelets and Frames,
(San Antonio, TX, 1999), Contemp. Math., Vol. 247, Amer. Math. Soc., Providence, RI, 1999,
pp. 75-91.

[6] A. Cohen, I. Daubechies, Nonseparable bidimensionale wavelet bases, Rev. Mat. Iberoamericana 9
(1993) 51-137.

[71 A. Cohen, K. Grochenig, L.F. Villemoes, Regularity of multivariate refinable functions, Constr.
Approx. 15 (1999) 241-255.

[8] Huang Daren, Li Yunzhang, Sun Qiyu, Refinable function and refinement mask with polynomial and
exponential decay, Chinese J. Contemporary Math. 20 (1999) 393-400.

[9] 1. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, 1992.

[10] K. Grochenig, W.R. Madych, Multiresolution analysis, Haar bases, and self-similar tilings of R",
IEEE Trans. Inform. Theory 38 (1992) 556-568.

[11] B. Han, On dual wavelet tight frames, Appl. Comput. Harmon. Anal. 4 (1997) 380-413.

[12] E.J. Tonascu, D.R. Larson, C.M. Pearcy, On wavelet sets, J. Fourier Anal. Appl. 4 (1998)
711-721.

[13] J. Kovacevi¢c, M. Vetterli, Perfect reconstruction filter banks for HSTV representation and coding,
Image Comm. 2 (1990) 349-364.

[14] J. Kovacevi¢, M. Vetterli, Nonseparable multidimensional perfect reconstruction filter banks and
wavelet bases for R”, IEEE Trans. Inform. Theory 38 (1992) 533-555.

[15] J.C. Lagarias, Y. Wang, Haar-type orthonormal wavelet bases in R?, J. Fourier Anal. Appl. 2 (1995)
1-14.

[16] S.D. Riemenschneider, Z.W. Shen, Multidimensional interpolatory subdivision schemes, SIAM
J. Numer. Math. 34 (1997) 2357-2381.

[17] Rong-Qing Jia, Characterization of smoothness of multivariate refinable functions in Sobolev spaces,
Trans. Amer. Math. Soc. 351 (1999) 4089—4112.



168 Yun-Zhang Li | Journal of Approximation Theory 125 (2003) 151-168

[18] P.M. Soardi, D. Weiland, Single wavelets in n-dimensions, J. Fourier Anal. Appl. 4 (1998) 299-315.

[19] L.F. Villemoes, Continuity of nonseparable quincunx wavelets, Appl. Comput. Harmon. Anal. 1
(1994) 180-187.

[20] Xingde Dai, D.R. Larson, D.M. Speegle, Wavelet sets in R", J. Fourier Anal. Appl. 3 (1997)
451-456.

[21] Yunzhang Li, An estimate of the regularity of a class bidimensional nonseparable refinable functions,
Acta Math. Sinica 42 (1999) 1053-1064 (Chinese edition).



	On the holes of a class of bidimensional nonseparable wavelets
	Introduction
	Some auxiliary lemmas and an algorithm of integrally similar matrix
	Some properties of a special M and M-wavelets
	Proofs of Theorems
	Acknowledgements
	References


