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Abstract

Let I be the 2� 2 identity matrix, and M a 2� 2 dilation matrix with M2 ¼ 2I : Since one
can explicitly construct M-basic wavelets from an MRA related to M; and many applications

employ wavelet bases in R2; M-wavelets and wavelet frames have been extensively discussed.

This paper focuses on dilation matrices M satisfying M2 ¼ 2I : For any matrix M integrally

similar to 1
1

1
�1

� �
; an optimal estimate on the boundary of the holes of M-wavelets is obtained.

This result tells us the holes cannot be too large. Contrast to this result, when the modulus of

the Fourier transform of an M-wavelet is, up to a constant, a characteristic function on some

set, a property of this set is obtained, which shows the holes of this kind of wavelets cannot be

too small.

r 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Throughout this paper, we denote by Z the set of integers, Zþ the set of

nonnegative integers, and I the 2� 2 identity matrix. For x ¼ x1
x2

� �
; y ¼ y1

y2

� �
AR2;
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/x; yS is defined by

/x; yS ¼ x1y1 þ x2y2:

For any Lebesgue measurable set SCR2 and 2� 2 matrix A; jSj denotes the
Lebesgue measure of S; wS denotes the characteristic function on S; A� denotes the
transpose of A; and AS denotes the set

AS ¼ fAx: xASg:

For any function f defined on R2; suppð f Þ is defined by

suppð f Þ ¼ fxAR2: f ðxÞa0g:

For fAL1ðR2Þ; we define the Fourier transform of f by

f̂ð�Þ ¼ 1

2p

Z
R2

dx f ðxÞe�i/x;�S:

Let S be a Lebesgue measurable set in R2: A collection fSg: gAGg of Lebesgue

measurable subsets of S is called a partition of S if
S

gAG Sg ¼ S up to a set of

measure 0, and jSg-Sg0 j ¼ 0 for gag0; g; g0AG:
A 2� 2 matrix M is called a dilation matrix if it is an integer matrix with its all

eigenvalues l’s being larger than 1 in modulus.

Let M be a given 2� 2 dilation matrix with M2 ¼ 2I : For any function f defined

on R2; jAZ; and kAZ2; define

fj;kð�Þ ¼ 2�
j
2f ðM�j � �kÞ:

A function c is called an M-wavelet if fcj;k: jAZ; kAZ2g is an orthonormal basis for
L2ðR2Þ; and the hole of the M-wavelet is referred to be the maximum connected set

containing a neighborhood of the origin on which #c vanishes a.e. A function

collection c1;c2;y;cr is called to generate an M-tight frame with frame bound 1 for

L2ðR2Þ ifXr

l¼1

X
jAZ;kAZ2

j/f ;cl
j;kSj2 ¼ jj f jj22

for fAL2ðRnÞ: A ladder of closed subspaces fVjgjAZ of L2ðR2Þ is called a

multiresolution analysis (MRA) related to M if the following conditions hold:

(1) VjCVj�1 for jAZ;
(2)

T
jAZ Vj ¼ f0g;

S
jAZ Vj ¼ L2ðRnÞ;

(3) f ð�ÞAVj if and only if f ðMj�ÞAV0 for jAZ;
(4) there exists a function fð�Þ in V0 such that the set ffð� � kÞgkAZ2 is an

orthonormal basis for V0:

It is well known that one can obtain an M-wavelet from an MRA related to M; but
not any M-wavelet can be derived from an MRA related to M [6,9].
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In recent years, multi-dimensional wavelets and wavelet frames have been
extensively discussed [2–4,7,10–12,15–17,19,20]. Especially, the study of bidimen-
sional wavelets has attracted many mathematician’s interest. Many applications,

such as image compression, employ wavelet bases in R2: Although separable bases
have a lot of advantages, they have a number of drawbacks. They are so special that
they have very little design freedom, and separability imposes an unnecessary
product structure on the plane, which is artificial for natural images. This preferred
directions effect can create unpleasant artifacts that become obvious at high image
compression ratios. Nonseparable wavelet bases offer the hope of a more isotropic
analysis [1,8,13,14,21]. M-wavelets are nonseparable. Hence, one may hope for a
more isotropic analysis than with the separable construction. This is also why we
deliberately restrict ourselves to the matrix M:
One-dimensional analyzing wavelets c’s in continuous wavelet transforms are

required to satisfy the admissibility condition, which leads to

#cð0Þ ¼ 0

if #c is also continuous at the origin. This is the case since cAL1ðRÞ in almost all

examples of practical interest. It is also well known that if c is a 2-wavelet and #c is
continuous at the origin, thenX

jAZ

j #cð2�j�Þj2 ¼ 1

a.e., which also implies that

#cð0Þ ¼ 0:

Hence, it is reasonable for a 2-wavelet c to require that #cð0Þ ¼ 0; and consequently,
it is interesting to introduce the concept of the hole of a wavelet. In [5], the behavior
at the origin of a class of band-limited 2-wavelets is deliberately addressed, and many
sharp results are obtained. Obviously the set ½�p; p� is the hole of the shannon
2-wavelet. The size of the hole of a 2-wavelet is discussed in [18]. By Theorems 5 and
6 in [18], we have that

Proposition 1. Let c be a 2-wavelet for L2ðRÞ: Then jsuppð #cÞ-½�c; c�j40 for c4p:

Proposition 2. Let c be a 2-wavelet for L2ðRÞ with j #cj ¼ 1ffiffiffiffi
2p

p wK for some

KC½�2p; 2p�: Then,

jK-½�p; p�j ¼ 0:

Analogously, suppose that c is an M-wavelet whose Fourier transform is
continuous at the origin. Then,X

jAZ

j #cððM�Þ�j�Þj2 ¼ 1
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a.e., which implies that

#cð0Þ ¼ 0:

Therefore, it is a natural problem to discuss the holes of M-wavelets.

Definition 1.1 (Bownik and Speegle [4], Lagarias and Wang [15]). Let A and B be
two 2� 2 matrices. A is called integrally similar to B if there exists an integer matrix

C with jdetCj ¼ 1 such that CAC�1 ¼ B: Here we call C an integrally similar matrix
from A to B:

Remark 1.1. Integrally similar matrix is not necessarily unique. For example, both
1
1

0
1

� �
and 3

1
1
0

� �
are integrally similar matrix from 2

�2
1
�2

� �
to 1

1
1
�1

� �
:

In this paper, we are concentrated on the study of the holes of M-wavelets, where

M is a 2� 2 matrix integrally similar to 1
1

1
�1

� �
: Our main results can be stated as

follows.

Theorem 1.1. Let M be a 2� 2 dilation matrix, and M be integrally similar to the

matrix 1
1

1
�1

� �
; i.e., PMP�1 ¼ 1

1
1
�1

� �
for some integer matrix P with jdet Pj ¼ 1:

Suppose c is an M-wavelet, then,

jsuppð #cÞ-P�ðfðx1; x2ÞT : jx1jpc; jx1 þ x2jpcgÞj40;

jsuppð #cÞ-P�ðfðx1; x2ÞT : jx2jpc; jx1 � x2jpcgÞj40

for c4p:

Remark 1.2. Theorem 1.1 shows the holes of M-wavelets cannot be too large. In
addition, the following Theorem 1.2 shows Theorem 1.1 is optimal in the following
sense: it does not hold for c ¼ p:

Theorem 1.2. Let M be a 2� 2 dilation matrix, and M be integrally similar

to the matrix 1
1

1
�1

� �
; i.e., PMP�1 ¼ 1

1
1
�1

� �
for some integer matrix P with

jdet Pj ¼ 1: Suppose c is an M-wavelet satisfying that j #cj ¼ 1
2p wK for some K

satisfying

KCP�ðfðx1; x2ÞT : jx1jpp; jx1 þ x2jp2pgÞ

ðor KCP�ðfðx1; x2ÞT : jx2jpp; jx1 � x2jp2pgÞÞ;

then

jK-P�Sð1Þ
p j ¼ 0 ðor jK-P�Sð2Þ

p j ¼ 0Þ;
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where

Sð1Þ
p ¼ fðx1; x2ÞT : jx1jpp; jx1 þ x2jppg;

Sð2Þ
p ¼ fðx1; x2ÞT : jx2jpp; jx1 � x2jppg:

Remark 1.3. Theorem 1.2 shows the holes of M-wavelet in this the theorem cannot
be too small. An example of c satisfying the hypothesis of Theorem 1.2 is given in
Example 4.1 in Section 4.

Remark 1.4. Note that M-wavelets are not separable, which is not the tensor
product of one-dimensional wavelets. We have not known the results about the M-
wavelet set as in one-dimensional case. So Theorem 1.2 is not the simple consequence
of wavelet sets.

Remark 1.5. For a matrix integrally similar to 1
1

1
�1

� �
; an integrally similar matrix P

from M to 1
1

1
�1

� �
can be obtained according to the algorithm below Lemma 2.4 in

Section 2.

Remark 1.6. By Remark 2.1 below Lemma 2.1 in Section 2 and the analogous
argument to that at the beginning of Section 4, Theorem 1.1 holds under the

following conditions: M satisfies PMP�1 ¼ 1
1

1
�1

� �
for some invertible matrix P;

f2�
j
2cðM� j

2 � �PkÞ: jAZ; kAZ2g is an orthonormal basis for L2ðR2Þ: If, in addition,

j #cj ¼ 1

2p
ffiffiffiffiffiffiffiffiffiffi
jdet Pj

p wK ; then Theorem 1.2 holds. Note that PZ2 ¼ Z2 if P is a 2� 2

integer matrix with jdet Pj ¼ 1: The two conclusions generalize Theorems 1.1 and
1.2, respectively.

In Section 2, some auxiliary lemmas and an algorithm of integrally similar matrix

are given. In Section 3, some properties of 1
1

1
�1

� �
and 1

1
1
�1

� �
-wavelets are given. In

Section 4, the proofs of the theorems are given, and an example of Theorem 1.2 is
also given.

2. Some auxiliary lemmas and an algorithm of integrally similar matrix

Lemma 2.1. Assume that cAL2ðR2Þ; that M1 is a 2� 2 dilation matrix with

M2
1 ¼ 2I ; and that M2 is integrally similar to M1; i.e., M2 ¼ PM1P

�1 for jdet Pj ¼ 1:

Then cð�Þ is an M1-wavelet for L2ðR2Þ if and only if *cð�Þ ¼ cðP�1�Þ is an M2-wavelet

for L2ðR2Þ:
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Proof. Note that PM1P
�1 ¼ M2; it is easy to check thatZ

R2

dx 2�
j
2 *cðM�j

2 x � kÞ2�
j0

2 *cðM�j0

2 x � k0Þ

¼
Z

R2

dx 2�
j
2cðP�1M�j

2 x � P�1kÞ2�
j0

2cðP�1M�j0

2 x � P�1k0Þ

¼
Z

R2

dx 2�
j
2cðM�j

1 x � P�1kÞ2�
j0

2cðM�j0

1 x � P�1k0Þ ð2:1Þ

for j; j0AZ; k; k0AZ2:

Suppose c is an M1-wavelet for L2ðR2Þ: Then, by (2.1), *c generates an M2-

orthonormal system. For any fAL2ðR2Þ; f ðP�ÞAL2ðR2Þ: Hence,

f ðP�Þ ¼
X

jAZ;kAZ2

fj;k2
� j
2cðM�j

1 � �kÞ ¼
X

jAZ;kAZ2

fj;k2
� j
2 *cðPM

�j
1 � �PkÞ

for some ffj;kgAl2ðZ � Z2Þ; and consequently,

f ð�Þ ¼
X

jAZ;kAZ2

fj;k2
� j
2 *cðPM

�j
1 P�1 � �PkÞ ¼

X
jAZ;kAZ2

fj;k2
� j
2 *cðM�j

2 � �P�1kÞ:

Therefore, *c is a M2-wavelet for L2ðR2Þ: The necessity is proved. &

The sufficiency can be proved analogously.

Remark 2.1. By the same procedure as that in Lemma 2.1, we have: Assume that

cAL2ðR2Þ; that M1 is a 2� 2 dilation matrix with M2
1 ¼ 2I ; and that M2 is similar to

M1; i.e., M2 ¼ PM1P
�1 for some invertible matrix P: Define *cð�Þ ¼

jdet Pj�
1
2cðP�1�Þ: Then cð�Þ is an M1-wavelet for L2ðR2Þ if and only if f2�

j
2 *cðM�j

2 �
�PkÞ: jAZ; kAZ2g is an orthonormal basis for L2ðR2Þ:

Lemma 2.2. A 2� 2 integer matrix M is a dilation matrix with M2 ¼ 2I if and only if

M ¼ 7 k
c

b
�k

� �
for some kAZþ; and some b; cAZ satisfying bc ¼ 2� k2:

Proof. Suppose M ¼ a
c

b
d

� �
: Obviously the eigenvalues of M are larger than 1 in

modulus if M2 ¼ 2I : So it suffices to show that M2 ¼ 2I if and only if M ¼ 7 k
c

b
�k

� �
for some 0pkAZ; and some b; cAZ satisfying bc ¼ 2� k2: It is easy to check that

the fact that M2 ¼ 2I is equivalent to the fact that

a2 þ bc ¼ d2 þ bc ¼ 2; ð2:2Þ

ab þ bd ¼ ac þ cd ¼ 0: ð2:3Þ
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Since a; dAZ; it follows from (2.2) that bca0: Hence, (2.2) and (2.3) are equivalent
to the fact that

a2 þ bc ¼ 2 and a ¼ �d;

which completes the proof. &

Lemma 2.3. (1) Integral similarity is an equivalent relation;
(2) Two 2� 2 matrices A and B are integrally similar if and only if �A and �B are

integrally similar;
(3) Let A and B be two 2� 2 integrally similar matrices. If A is a dilation matrix

with A2 ¼ 2I ; then so does B;

(4) If a 2� 2 matrix A is integrally similar to the matrix 1
1

1
�1

� �
; then so does �A:

Proof. We only give the proof of (4). The proofs of the others are omitted. Suppose

PAP�1 ¼ 1
1

1
�1

� �
for some integer matrix with jdet Pj ¼ 1: Putting Q ¼ 0

1
�1
0

� �
P; we

obtain that Qð�AÞQ�1 ¼ 1
1

1
�1

� �
: The proof is completed. &

Remark 2.2. Proposition 2.1 in [4] and Lemma 5.2 in [15] give a classification of
integer matrices with determinant 72 in terms of integral similarity. By Lemma 2.3,

they are equivalent, and any dilation matrix M with M2 ¼ 2I is integrally similar to
1
1

1
�1

� �
: It follows from Lemmas 2.2 and 2.3(4) that, for dilation matrices M with

M2 ¼ 2I ; the question of looking for an integrally similar matrix P from M to 1
1

1
�1

� �
is reduced to looking for an integrally similar matrix P from k

c
b
�k

� �
to 1

1
1
�1

� �
; where

kAZþ; b; cAZ; bc ¼ 2� k2:

Lemma 2.4. Let kAZþ; b; cAZ; and bc ¼ 2� k2: Then P is an integrally similar

matrix from k
c

b
�k

� �
to 1

1
1
�1

� �
if and only if

P ¼
ðk þ 1Þx þ cy bx � ðk � 1Þy

x y


 �
;

where x; yAZ; and

ðbx2 � 2kxy � cy2Þ2 ¼ 1: ð2:4Þ

Proof. An unknown matrix a
x

b
y

� �
satisfies

a b

x y


 �
k b

c �k


 �
¼

1 1

1 �1


 �
a b

x y


 �
if and only if

a� ðk þ 1Þx � cy ¼ 0;

b� bx þ ðk � 1Þy ¼ 0;

ðk � 1Þaþ cb� x ¼ 0;

ba� ðk þ 1Þb� y ¼ 0:

8>>><>>>: ð2:5Þ
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It follows from simple computation that (2.5) is equivalent to

a ¼ ðk þ 1Þx þ cy;

b ¼ bx � ðk � 1Þy:

�
ð2:6Þ

Hence, k
c

b
�k

� �
is integrally similar to 1

1
1
�1

� �
if and only if there exist x; yAZ such that

det a
x

b
y

� �h i2
¼ 1; where a; b satisfy (2.6). It is easy to check that det a

x
b
y

� �h i2
¼

ðbx2 � 2kxy � cy2Þ2: Therefore, k
c

b
�k

� �
is integrally similar to 1

1
1
�1

� �
if and only if the

bivariate equation

ðbx2 � 2kxy � cy2Þ2 ¼ 1

has an integer solution. The proof is completed. &

It follows from Lemma 2.4 that looking for an integrally similar matrix P; from a

2� 2 dilation M with M2 ¼ 2I to 1
1

1
�1

� �
; is reduced to looking for an integer

solution to the bivariate equation (2.4). Obviously it is not easy. Here we give an
algorithm to get such a P: The idea is borrowed from [15].

(I) By Lemma 2.2, M ¼ 7 k
c

b
�k

� �
for some kAZþ; and some b; cAZ satisfying

bc ¼ 2� k2: Note that Q �k
�c

�b
k

� �
Q�1 ¼ 1

1
1
�1

� �
if P k

c
b
�k

� �
P�1 ¼ 1

1
1
�1

� �
; where Q ¼

0
1

�1
0

� �
P: So it suffices to look for the integrally similar matrix P from k

c
b
�k

� �
to

1
1

1
�1

� �
; where kAZþ; and b; cAZ with bc ¼ 2� k2:

(II) If k ¼ 0; then M ¼ 0
2

1
0

� �
; 0

�2
�1
0

� �
; 0

1
2
0

� �
; or 0

�1
�2
0

� �
; and we take P ¼ 1

1
1
0

� �
;

1
1

�1
0

� �
; 1

0
1
1

� �
; or 1

0
�1
�1

� �
; respectively.

If k ¼ 1; then M ¼ 1
1

1
�1

� �
or 1

�1
�1
�1

� �
; and we take P ¼ 1

0
0
1

� �
or 1

1
�1
1

� �
;

respectively.

If k ¼ 2; then M ¼ 2
�2

1
�2

� �
; 2

2
�1
�2

� �
; 2

�1
2
�2

� �
; or 2

1
�2
�2

� �
; and we take P ¼ 1

1
0
1

� �
;

1
1

0
�1

� �
; 1

1
0
2

� �
; or 1

1
0
�2

� �
; respectively.

(III) k42:

Since kAZ; bc ¼ 2� k2a0: If jbjXk and jcjXk; then jbj ¼ k2�2
jcj p

k2�2
k

¼ k � 2
k
:

Noting bAZ and 0o2
k
o1; we obtain that 0ojbjok or 0ojcjok:

When 0ojbjok; it is easy to check that

1 0

signðbÞ 1


 �
k b

c �k


 �
1 0

signðbÞ 1


 ��1
¼

k � jbj b

2k signðbÞ þ c � b jbj � k


 �
:

When 0ojcjok; it is easy to check that

1 �signðcÞ
0 1


 �
k b

c �k


 �
1 �signðcÞ
0 1


 ��1
¼

k � jcj 2k signðcÞ � c þ b

c jcj � k


 �
:

In view of Lemma 2.3 (3), applying the above procedure to k
c

b
�k

� �
finitely many

times, we reduces (III) to (II). Then the product of all these similar matrices gives
the P:
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3. Some properties of a special M and M-wavelets

Throughout this section M is always referred to be the matrix 1
1

1
�1

� �
:

Lemma 3.1. Let M ¼ 1
1

1
�1

� �
: For c40; define

Sð1Þ
c ¼ fðx1; x2ÞT : jx1jpc; jx1 þ x2jpcg;

Sð2Þ
c ¼ fðx1; x2ÞT : jx2jpc; jx1 � x2jpcg:

Then

Mj1Sð1Þ
c CMj2Sð1Þ

c and Mj1Sð2Þ
c CMj2Sð2Þ

c

for j1oj2; j1; j2AZ:

The proof is omitted.

Lemma 3.2. Let M ¼ 1
1

1
�1

� �
; c40; S

ð1Þ
c and S

ð2Þ
c be defined as in Lemma 3.1. Define

I ð1Þc ¼ fðx1; x2ÞT : jx1jpc; cpjx1 þ x2jp2cg;

I ð2Þc ¼ fðx1; x2ÞT : jx2jpc; cpjx1 � x2jp2cg:

Then,

(1) Both fMjI
ð1Þ
c : jAZg and fMjI

ð2Þ
c : jAZg are partitions of R2;

(2) fMjI
ð1Þ
c : jAZ; jo0g and fMjI

ð2Þ
c : jAZ; jo0g are partitions of S

ð1Þ
c and S

ð2Þ
c ;

respectively.

Proof. We only give the proof of the case I
ð1Þ
c : The proofs of the other parts can be

given analogously. Define S ¼ I
ð1Þ
c ,MI

ð1Þ
c ; then

S ¼fðx1; x2ÞT : jx1jpc; cpjx1 þ x2jp2cg

,fðx1; x2ÞT : cpjx1jp2c; jx1 þ x2jp2cg:

It is easy to check that f2jS: jAZg is a partition of R2: It is obvious that

I
ð1Þ
c -M2jI

ð1Þ
c CS-2jS for 0ajAZ; and that Ic-M2jþ1IcCS-2jMIcCS-2jS for

jAZ:
Hence,

jI ð1Þc -MjI ð1Þc j ¼ 0 ð3:1Þ

for 0ajAZ:

ARTICLE IN PRESS
Yun-Zhang Li / Journal of Approximation Theory 125 (2003) 151–168 159



Since f2jS: jAZg is a partition of R2;

R2 ¼
[
jAZ

2jS

¼
[
jAZ

2jI ð1Þc

 !
,

[
jAZ

2jMI ð1Þc

 !

¼
[
jAZ

M2jI ð1Þc

 !
,

[
jAZ

M2jþ1I ð1Þc

 !
¼
[
jAZ

MjI ð1Þc

up to a set of measure 0. This together with (3.1) implies that fMjI
ð1Þ
c : jAZg is a

partition of R2:

It is obvious that I
ð1Þ
c CMS

ð1Þ
c ; and consequently, MjI

ð1Þ
c CMjþ1S

ð1Þ
c for jAZ: So,

by Lemma 3.1, MjI
ð1Þ
c CMjþ1S

ð1Þ
c CS

ð1Þ
c for jo0; jAZ:

Hence,[
jo0

MjI ð1Þc CSð1Þ
c : ð3:2Þ

For any xAS
ð1Þ
c with x1a0; there exists j1p0 such that 2j1�1cpjx1jp2j1c: Since

MI ð1Þc ¼ fðx1; x2ÞT : cpjx1jp2c; jx1 þ x2jp2cg;

xA2j1�1MI
ð1Þ
c ¼ M2j1�1I

ð1Þ
c when jx1 þ x2jp2j1c: When jx1 þ x2j42j1c; 2j2�1cpjx1 þ

x2jp2j2c for some j1pj2 � 1: Noting that jx1jp2j2�1c; we obtain that xA2j2�1I
ð1Þ
c ¼

M2j2�2I
ð1Þ
c : Therefore,

Sð1Þ
c C

[
jo0

MjI ð1Þc ð3:3Þ

up to a set of Lebesgue measure zero. This together with (3.1) and (3.2) implies that

fMjI
ð1Þ
c : jAZ; jo0g is a partition of S

ð1Þ
c : The proof is completed. &

Lemma 3.3. Let M ¼ 1
1

1
�1

� �
; 0ocpp; I

ð1Þ
c and I

ð2Þ
c be defined as in Lemma 3.2, Q1;

Q2; Q3; and Q4 denote the four quadrants in R2: Define cð1Þ
i and cð2Þ

i byd
cð1Þ

icð1Þ
i ¼ 1

2p
w

Qi-I
ð1Þ
c

and
d
cð2Þ

icð2Þ
i ¼ 1

2p
w

Qi-I
ð2Þ
c

for 1pip4: Then both the collection

fcð1Þ
1 ;cð1Þ

2 ;cð1Þ
3 ;cð1Þ

4 g
and the collection

fcð2Þ
1 ;cð2Þ

2 ;cð2Þ
3 ;cð2Þ

4 g

generate M-tight frames for L2ðR2Þ with frame bound 1.
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Proof. We only give the proof of fcð1Þ
1 ; cð1Þ

2 ; cð1Þ
3 ; cð1Þ

4 g: The proof of the other is
analogous. Taking the closed subspace of L2ðR2Þ

D ¼ffAL2ðR2Þ: f̂ALNðR2Þ; suppð f̂ÞCK

for some compact KCR2
\f0gg;

then it suffices to show that

jj f jj2 ¼
X4
i¼1

X
jAZ;kAZ2

j/f ;cð1Þ
i;j;kSj2 ð3:4Þ

for fAD:
By [3, Corollary 3.3], it suffices to show thatX4

i¼1

X
jAZ

jdcð1Þ
icð1Þ
i ðMjxÞj2 ¼ 1

4p2
ð3:5Þ

for a.e. xAR2; andX4
i¼1

XN
j¼0

d
cð1Þ

ic
ð1Þ
i ðMjxÞdcð1Þ

ic
ð1Þ
i ðMjðxþ 2pkÞÞ ¼ 0 ð3:6Þ

for kAZ2
\MZ2 and a.e. xAR2:

By Lemma 3.2, fMjI
ð1Þ
c : jAZg is a partition of R2:Hence, by the definition of cð1Þ

i ;

(3.5) holds. Since the diameter of the sets Qi-I
ð1Þ
c measured along the coordinate

axes is not larger than 2p; (3.6) holds. The proof is completed. &

Lemma 3.4. Define

Sð1Þ
p ¼ fðx1; x2ÞT : jx1jpp; jx1 þ x2jppg;

Sð2Þ
p ¼ fðx1; x2ÞT : jx2jpp; jx1 � x2jppg:

Then,X
kAZ2

Z
S
ð1Þ
p

dx f ðxÞe�i/k;xS

���� ����2¼ 4p2
Z

S
ð1Þ
p

dx j f ðxÞj2 for fAL2ðSð1Þ
p Þ; ð3:7Þ

X
kAZ2

Z
S
ð2Þ
p

dx f ðxÞe�i/k;xS

���� ����2¼ 4p2
Z

S
ð2Þ
p

dx j f ðxÞj2 for fAL2ðSð2Þ
p Þ: ð3:8Þ

Proof. We only prove (3.7). Eq. (3.8) can be proved analogously. Since the diameter

of S
ð1Þ
p measured along the coordinate axes is exactly 2p; f can be 2pZ2-periodically

extended. We still denote the extended function by f :
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Define

R1 ¼fðx1; x2ÞT : � ppx1p0;�p� x1px2ppg

,fðx1; x2ÞT : 0px1pp;�ppx2pp� x1g;

R2 ¼ fðx1; x2ÞT : � ppx1p0; ppx2pp� x1g;

R3 ¼ fðx1; x2ÞT : 0px1pp;�p� x1px2p� pg:

Then,Z
S
ð1Þ
p

dx f ðxÞe�i/k;xS ¼
X3
i¼1

Z
Ri

dx f ðxÞe�i/k;xS: ð3:9Þ

Z
R2

dx f ðxÞe�i/k;xS

¼
Z

R2�ð0;2pÞT
dZ f ðZþ ð0; 2pÞTÞe�i/k;ZS

¼
Z
fðZ1;Z2ÞT : �ppZ1p0;�ppZ2p�p�Z1g

dZ f ðZÞe�i/k;ZS

¼
Z
fðx1;x2ÞT : �ppx1p0;�ppx2p�p�x1g

dx f ðxÞe�i/k;xS: ð3:10Þ

Analogously,Z
R3

dx f ðxÞe�i/k;xS ¼
Z
fðx1;x2ÞT : 0px1pp;p�x1px2ppg

dx f ðxÞe�i/k;xS: ð3:11Þ

This together with (3.9) and (3.10) yields thatZ
S
ð1Þ
p

dx f ðxÞe�i/k;xS ¼
Z
½�p;p�2

dx f ðxÞe�i/k;xS;

and consequently,

X
kAZ2

Z
S
ð1Þ
p

dx f ðxÞe�i/k;xS

���� ����2¼ X
kAZ2

Z
½�p;p�2

dx f ðxÞe�i/k;xS

�����
�����
2

¼ 4p2
Z
½�p;p�2

dx j f ðxÞj2:

By the arguments similar to that of the above, we obtain thatZ
S
ð1Þ
p

dx j f ðxÞj2 ¼
Z
½�p;p�2

dx j f ðxÞj2:
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Therefore,

X
kAZ2

Z
S
ð1Þ
p

dx f ðxÞe�i/k;xS

���� ����2¼ 4p2
Z

S
ð1Þ
p

dx j f ðxÞj2:

The proof is completed. &

Lemma 3.5. Let M ¼ 1
1

1
�1

� �
; 0ocpp; S

ð1Þ
c ; I

ð1Þ
c ; S

ð1Þ
c ; and I

ð2Þ
c be defined as in

Lemmas 3.1 and 3.2, respectively. Suppose c is an M-wavelet for L2ðR2Þ: Then,X
jo0

2�j

Z
MjI

ð1Þ
c

dx j #cðxÞj2p c2

p2
p
X
jo0

2�j

Z
MjI

ð1Þ
c

dx j #cðxÞj2

þ
Z

R2\S
ð1Þ
c

dx j #cðxÞj2; ð3:12Þ

X
jo0

2�j

Z
MjI

ð2Þ
c

dx j #cðxÞj2p c2

p2
p
X
jo0

2�j

Z
MjI

ð2Þ
c

dx j #cðxÞj2

þ
Z

R2\S
ð2Þ
c

dx j #cðxÞj2: ð3:13Þ

In addition,X
jo0

ð2�j � 1Þ
Z

MjI
ð1Þ
c

dx j #cðxÞj2 ¼ c2

p2
� 1 if suppð #cÞCMSð1Þ

c ; ð3:14Þ

X
jo0

ð2�j � 1Þ
Z

MjI
ð2Þ
c

dx j #cðxÞj2 ¼ c2

p2
� 1 if suppð #cÞCMSð2Þ

c : ð3:15Þ

Proof. We only prove (3.12) and (3.14). Eqs. (3.13) and (3.15) can be proved

analogously. Suppose cð1Þ
i ; 1pip4; are defined as in Lemma 3.3, then jjcð1Þ

i jj22 ¼

jjdcð1Þ
icð1Þ
i jj22 ¼ c2

4p2: Since c is an M-wavelet for L2ðR2Þ;

c2

p2
¼
X4
i¼1

jjcð1Þ
i jj22

¼
X4
i¼1

X
jAZ;kAZ2

j/cð1Þ
i ;cj;kSj2

¼
X4
i¼1

X
jAZ;kAZ2

2j

Z
R2

dx
d
cð1Þ

icð1Þ
i ðxÞ #cðMjxÞe�i/Mj k;xS

���� ����2
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¼
X4
i¼1

X
jAZ;kAZ2

2�j

Z
R2

dx
d
cð1Þ

ic
ð1Þ
i ðM�jxÞ #cðxÞe�i/k;xS

���� ����2

¼
X4
i¼1

X
jo0;kAZ2

2�j

Z
R2

dx
d
cð1Þ

icð1Þ
i ðM�jxÞ #cðxÞe�i/k;xS

���� ����2

þ
X4
i¼1

X
jX0;kAZ2

2�j

Z
R2

dx
d
cð1Þ

icð1Þ
i ðM�jxÞ #cðxÞe�i/k;xS

���� ����2
� J 0 þ J 00: ð3:16Þ

It is easy to check that suppðdcð1Þ
icð1Þ
i ðM�j�ÞÞCMjþ1S

ð1Þ
c for jAZ; so, by Lemma 3.1,

suppðdcð1Þ
icð1Þ
i ðM�j�ÞÞCS

ð1Þ
c CS

ð1Þ
p for jo0; jAZ: Applying Lemma 3.4, we obtain that

J 0 ¼
X4
i¼1

X
jo0;kAZ2

2�j

Z
Sp

dx
d
cð1Þ

ic
ð1Þ
i ðM�jxÞ #cðxÞe�i/k;xS

���� ����2

¼
X4
i¼1

X
jo0

2�j4p2
Z

S
ð1Þ
p

dx jdcð1Þ
icð1Þ
i ðM�jxÞ #cðxÞj2

¼
X4
i¼1

X
jo0

2�j

Z
MjðQi-I

ð1Þ
c Þ

dx j #cðxÞj2

¼
X
jo0

2�j

Z
MjI

ð1Þ
c

dx j #cðxÞj2: ð3:17Þ

J 00p
X4
i¼1

X
jX0;kAZ2

2�j

Z
R2

dx
d
cð1Þ

ic
ð1Þ
i ðM�jxÞ #cðxÞe�i/M�jk;xS

���� ����2
since the right side contains more terms than the left side. By Lemma 3.1, it is easy to

check that the equality holds when suppð #cÞCMS
ð1Þ
c :

Taking g such that ĝ ¼ ð1� w
S
ð1Þ
c
Þ %#c; then, by Lemma 3.3, we obtain that

J 00p
X4
i¼1

X
jX0;kAZ2

2�j

Z
R2

dx
d
cð1Þ

icð1Þ
i ðM�jxÞ #cðxÞe�i/M�j k;xS

���� ����2

¼
X4
i¼1

X
jAZ;kAZ2

2�j

Z
R2

dxð1� w
S
ð1Þ
c
Þ #cðxÞdcð1Þ

ic
ð1Þ
i ðM�jxÞe�i/M�jk;xS

���� ����2

¼
X4
i¼1

X
jAZ;kAZ2

j/g;cð1Þ
i;j;kSj2
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¼
Z

R2

dx jĝðxÞj2

¼
Z

R2\S
ð1Þ
c

dx j #cðxÞj2; ð3:18Þ

where Lemma 3.3 is used in the third equality, the inequality sign, by Lemma 3.1,

changes to be equality sign when suppð #cÞCMS
ð1Þ
c :

It follows from (3.16)–(3.18) thatX
jo0

2�j

Z
MjIc

dx j #cðxÞj2pc2

p2
p
X
jo0

2�j

Z
MjIc

dx j #cðxÞj2 þ
Z

R2\S
ð1Þ
c

dx j #cðxÞj2;

and when suppð #cÞCMS
ð1Þ
c ;

c2

p2
¼
X
jo0

2�j

Z
Mj Ic

dx j #cðxÞj2 þ
Z

R2\S
ð1Þ
c

dx j #cðxÞj2

¼
X
jo0

2�j

Z
Mj Ic

dx j #cðxÞj2 þ 1�
Z

S
ð1Þ
c

dx j #cðxÞj2: ð3:19Þ

By Lemma 3.2, (3.19) is equivalent toX
jo0

ð2�j � 1Þ
Z

MjIc

dx j #cðxÞj2 ¼ c2

p2
� 1:

The proof is completed. &

4. Proofs of Theorems

Assume that Theorems 1.1 and 1.2 hold for 1
1

1
�1

� �
-wavelets. For any M-wavelet

c; *cð�Þ ¼ cðP�1�Þ is an 1
1

1
�1

� �
-wavelet by Lemma 2.1. Applying the assumption to *c;

we obtain that Theorems 1.1 and 1.2. Therefore, it suffices to show that Theorems

1.1 and 1.2 hold for 1
1

1
�1

� �
-wavelets.

Proof of Theorem 1.1. By contradiction. Let M ¼ 1
1

1
�1

� �
; and c be an M-wavelet.

Then we can take P ¼ I : For c40; define S
ð1Þ
c ; S

ð2Þ
c ; I

ð1Þ
c ; and I

ð2Þ
c as in Lemmas 3.1

and 3.2. Suppose that jsuppð #cÞ-S
ð1Þ
c j ¼ 0 (or jsuppð #cÞ-S

ð2Þ
c j ¼ 0). Then, by (2) of

Lemma 3.2, jsuppð #cÞ-MjI
ð1Þ
c j ¼ 0 (or jsuppð #cÞ-MjI

ð2Þ
c j ¼ 0) for jo0: Applying

(3.12) (or (3.13)) of Lemma 2.6 to c; we obtain that

c2

p2
p
Z

R2\S
ð1Þ
c

dx j #cðxÞj2 ¼
Z

R2

dx j #cðxÞj2 ¼ 1

or
c2

p2
p
Z

R2\S
ð2Þ
c

dx j #cðxÞj2 ¼
Z

R2

dx j #cðxÞj2 ¼ 1


 �
;

which implies cpp: The proof is completed. &
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Proof Theorem 1.2. Let M ¼ 1
1

1
�1

� �
; and c be an M-wavelet. Then we can take

P ¼ I : Define S
ð1Þ
p ; S

ð2Þ
p ; I

ð1Þ
p ; and I

ð2Þ
p as in Lemmas 3.1 and 3.2. Since KCMS

ð1Þ
p (or

KCMS
ð2Þ
p ), (3.14) (or (3.15)) of Lemma 3.5 takes the form

0 ¼ 1

4p2
X
jo0

ð2�j � 1ÞjK-MjI ð1Þp j ðor 0 ¼ 1

4p2
X
jo0

ð2�j � 1ÞjK-MjI ð2Þp jÞ:

ð4:1Þ

Again by Lemma 3.2, we obtain that

jK-Sð1Þ
p j ¼ K-

[
jo0

MjI ð1Þp

 !�����
�����pX

jo0

ð2�j � 1ÞjK-MjI ð1Þp j ¼ 0

or K-Sð2Þ
p j ¼ K-

[
jo0

MjI ð2Þp

 !�����
�����pX

jo0

ð2�j � 1ÞjK-MjI ð2Þp j ¼ 0

 !
:

Hence, jK-S
ð1Þ
p j ¼ 0 (or jK-S

ð1Þ
p j ¼ 0). The proof is completed. &

In the next, we give an example of Theorem 1.2.

Example 2.1. Let a matrix M be integrally similar to the matrix 1
1

1
�1

� �
; i.e.,

PMP�1 ¼ 1
1

1
�1

� �
for some integer matrix P with jdet Pj ¼ 1: Define I

ð1Þ
p and I

ð2Þ
p as in

Lemma 3.2, define c by

#cð�Þ ¼ � 1

2p
e�i

1
2
/P�1 1

1

� �
;�Sw

P�I
ð1Þ
p
ð�Þ

ðor #cð�Þ ¼ � 1

2p
e�i

1
2
/P�1 1

1

� �
;�Sw

P�I
ð2Þ
p
ð�ÞÞ:

Then c is an M-wavelet for L2ðR2Þ:

Proof. By Lemma 2.1, it suffices to show the proposition is true for M ¼ 1
1

1
�1

� �
:

Suppose M ¼ 1
1

1
�1

� �
; we can take P ¼ I : We denote by m0ð�Þ the 2pZ periodization

of w½�p
2
;
p
2
�: Then m0 generates an orthonormal MRA for L2ðRÞ with m0 being its

symbol. Define H0ðxÞ ¼ m0ðx1Þ (or H0ðxÞ ¼ m0ðx2Þ) for xAR2: By [6], H0 generates

an orthonormal MRA for L2ðR2Þ with H0 being its symbol and f being its scaling
function, where

#fð�Þ ¼ 1

2p

YN
j¼1

H0ðM�j�Þ:

Then the basic wavelet *c can be defined by

#*cð�Þ ¼ H1ðM�1�Þ #fðM�1�Þ;
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where H1ðxÞ ¼ �e�ix1H0ðxþ ðp; pÞTÞ: It is easy to check that

#*cðxÞ ¼ � 1

2p
e�i

x1þx2
2 w

I
ð1Þ
p
ðxÞ ðor #*cðxÞ ¼ � 1

2p
e�i

x1þx2
2 w

I
ð2Þ
p
ðxÞÞ

for xAR2: Hence, c ¼ *c; and thus c is an M-wavelet for L2ðR2Þ: The proof is
completed. &
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[14] J. Kovačević, M. Vetterli, Nonseparable multidimensional perfect reconstruction filter banks and

wavelet bases for Rn; IEEE Trans. Inform. Theory 38 (1992) 533–555.

[15] J.C. Lagarias, Y. Wang, Haar-type orthonormal wavelet bases in R2; J. Fourier Anal. Appl. 2 (1995)

1–14.

[16] S.D. Riemenschneider, Z.W. Shen, Multidimensional interpolatory subdivision schemes, SIAM

J. Numer. Math. 34 (1997) 2357–2381.

[17] Rong-Qing Jia, Characterization of smoothness of multivariate refinable functions in Sobolev spaces,

Trans. Amer. Math. Soc. 351 (1999) 4089–4112.

ARTICLE IN PRESS
Yun-Zhang Li / Journal of Approximation Theory 125 (2003) 151–168 167



[18] P.M. Soardi, D. Weiland, Single wavelets in n-dimensions, J. Fourier Anal. Appl. 4 (1998) 299–315.

[19] L.F. Villemoes, Continuity of nonseparable quincunx wavelets, Appl. Comput. Harmon. Anal. 1

(1994) 180–187.

[20] Xingde Dai, D.R. Larson, D.M. Speegle, Wavelet sets in Rn; J. Fourier Anal. Appl. 3 (1997)

451–456.

[21] Yunzhang Li, An estimate of the regularity of a class bidimensional nonseparable refinable functions,

Acta Math. Sinica 42 (1999) 1053–1064 (Chinese edition).

ARTICLE IN PRESS
Yun-Zhang Li / Journal of Approximation Theory 125 (2003) 151–168168


	On the holes of a class of bidimensional nonseparable wavelets
	Introduction
	Some auxiliary lemmas and an algorithm of integrally similar matrix
	Some properties of a special M and M-wavelets
	Proofs of Theorems
	Acknowledgements
	References


